metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C24⋊2F5, C5⋊2C2≀C4, C23⋊F5⋊2C2, (C23×C10)⋊5C4, C23.D5⋊7C4, C23.F5⋊2C2, C23.19(C2×F5), (C2×Dic5).14D4, (C22×D5).14D4, C24⋊2D5.2C2, C2.11(C23⋊F5), C10.21(C23⋊C4), C22.23(C22⋊F5), (C22×C10).50(C2×C4), (C2×C5⋊D4).86C22, (C2×C10).46(C22⋊C4), SmallGroup(320,272)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C10 — C2×C10 — C22×D5 — C2×C5⋊D4 — C23⋊F5 — C24⋊2F5 |
Generators and relations for C24⋊2F5
G = < a,b,c,d,e,f | a2=b2=c2=d2=e5=f4=1, ab=ba, ac=ca, ad=da, ae=ea, faf-1=abcd, bc=cb, bd=db, be=eb, fbf-1=bcd, fcf-1=cd=dc, ce=ec, de=ed, df=fd, fef-1=e3 >
Subgroups: 506 in 94 conjugacy classes, 18 normal (all characteristic)
C1, C2, C2, C4, C22, C22, C5, C8, C2×C4, D4, C23, C23, D5, C10, C10, C22⋊C4, M4(2), C2×D4, C24, Dic5, F5, D10, C2×C10, C2×C10, C23⋊C4, C4.D4, C22≀C2, C5⋊C8, C2×Dic5, C2×Dic5, C5⋊D4, C2×F5, C22×D5, C22×C10, C22×C10, C2≀C4, C23.D5, C23.D5, C22.F5, C22⋊F5, C2×C5⋊D4, C2×C5⋊D4, C23×C10, C23⋊F5, C23.F5, C24⋊2D5, C24⋊2F5
Quotients: C1, C2, C4, C22, C2×C4, D4, C22⋊C4, F5, C23⋊C4, C2×F5, C2≀C4, C22⋊F5, C23⋊F5, C24⋊2F5
Character table of C24⋊2F5
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 5 | 8A | 8B | 10A | 10B | 10C | 10D | 10E | 10F | 10G | 10H | 10I | 10J | 10K | 10L | 10M | 10N | 10O | |
size | 1 | 1 | 2 | 4 | 4 | 4 | 20 | 20 | 40 | 40 | 40 | 4 | 40 | 40 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | i | -1 | -i | 1 | i | -i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -i | -1 | i | 1 | -i | i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ7 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | i | 1 | -i | 1 | -i | i | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ8 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -i | 1 | i | 1 | i | -i | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ9 | 2 | 2 | 2 | 0 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | -2 | -2 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 0 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | -2 | -2 | orthogonal lifted from D4 |
ρ11 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | -4 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ12 | 4 | -4 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 2 | 2 | 2 | 0 | 2 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | -4 | 0 | 0 | orthogonal lifted from C2≀C4 |
ρ13 | 4 | -4 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | -2 | -2 | -2 | 0 | -2 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | -4 | 0 | 0 | orthogonal lifted from C2≀C4 |
ρ14 | 4 | 4 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from C2×F5 |
ρ15 | 4 | 4 | 4 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from F5 |
ρ16 | 4 | 4 | 4 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | √5 | -√5 | √5 | -1 | -√5 | -1 | -√5 | √5 | √5 | -√5 | 1 | 1 | -1 | 1 | 1 | orthogonal lifted from C22⋊F5 |
ρ17 | 4 | 4 | 4 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | -√5 | √5 | -√5 | -1 | √5 | -1 | √5 | -√5 | -√5 | √5 | 1 | 1 | -1 | 1 | 1 | orthogonal lifted from C22⋊F5 |
ρ18 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 2ζ53+2ζ5+1 | 2ζ52+2ζ5+1 | 2ζ54+2ζ52+1 | 1 | 2ζ54+2ζ53+1 | 1 | 2ζ52+2ζ5+1 | 2ζ54+2ζ52+1 | 2ζ53+2ζ5+1 | 2ζ54+2ζ53+1 | -√5 | √5 | -1 | √5 | -√5 | complex lifted from C23⋊F5 |
ρ19 | 4 | -4 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 2ζ52+1 | 2ζ54+1 | 2ζ53+1 | √5 | 2ζ5+1 | -√5 | -2ζ54-1 | -2ζ53-1 | -2ζ52-1 | -2ζ5-1 | 2ζ54+2ζ53+1 | 2ζ54+2ζ52+1 | 1 | 2ζ53+2ζ5+1 | 2ζ52+2ζ5+1 | complex faithful |
ρ20 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 2ζ54+2ζ53+1 | 2ζ53+2ζ5+1 | 2ζ52+2ζ5+1 | 1 | 2ζ54+2ζ52+1 | 1 | 2ζ53+2ζ5+1 | 2ζ52+2ζ5+1 | 2ζ54+2ζ53+1 | 2ζ54+2ζ52+1 | √5 | -√5 | -1 | -√5 | √5 | complex lifted from C23⋊F5 |
ρ21 | 4 | -4 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | -2ζ54-1 | -2ζ53-1 | -2ζ5-1 | -√5 | -2ζ52-1 | √5 | 2ζ53+1 | 2ζ5+1 | 2ζ54+1 | 2ζ52+1 | 2ζ53+2ζ5+1 | 2ζ54+2ζ53+1 | 1 | 2ζ52+2ζ5+1 | 2ζ54+2ζ52+1 | complex faithful |
ρ22 | 4 | -4 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 2ζ54+1 | 2ζ53+1 | 2ζ5+1 | -√5 | 2ζ52+1 | √5 | -2ζ53-1 | -2ζ5-1 | -2ζ54-1 | -2ζ52-1 | 2ζ53+2ζ5+1 | 2ζ54+2ζ53+1 | 1 | 2ζ52+2ζ5+1 | 2ζ54+2ζ52+1 | complex faithful |
ρ23 | 4 | -4 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | -2ζ5-1 | -2ζ52-1 | -2ζ54-1 | -√5 | -2ζ53-1 | √5 | 2ζ52+1 | 2ζ54+1 | 2ζ5+1 | 2ζ53+1 | 2ζ54+2ζ52+1 | 2ζ52+2ζ5+1 | 1 | 2ζ54+2ζ53+1 | 2ζ53+2ζ5+1 | complex faithful |
ρ24 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 2ζ52+2ζ5+1 | 2ζ54+2ζ52+1 | 2ζ54+2ζ53+1 | 1 | 2ζ53+2ζ5+1 | 1 | 2ζ54+2ζ52+1 | 2ζ54+2ζ53+1 | 2ζ52+2ζ5+1 | 2ζ53+2ζ5+1 | √5 | -√5 | -1 | -√5 | √5 | complex lifted from C23⋊F5 |
ρ25 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 2ζ54+2ζ52+1 | 2ζ54+2ζ53+1 | 2ζ53+2ζ5+1 | 1 | 2ζ52+2ζ5+1 | 1 | 2ζ54+2ζ53+1 | 2ζ53+2ζ5+1 | 2ζ54+2ζ52+1 | 2ζ52+2ζ5+1 | -√5 | √5 | -1 | √5 | -√5 | complex lifted from C23⋊F5 |
ρ26 | 4 | -4 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 2ζ53+1 | 2ζ5+1 | 2ζ52+1 | √5 | 2ζ54+1 | -√5 | -2ζ5-1 | -2ζ52-1 | -2ζ53-1 | -2ζ54-1 | 2ζ52+2ζ5+1 | 2ζ53+2ζ5+1 | 1 | 2ζ54+2ζ52+1 | 2ζ54+2ζ53+1 | complex faithful |
ρ27 | 4 | -4 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | -2ζ52-1 | -2ζ54-1 | -2ζ53-1 | √5 | -2ζ5-1 | -√5 | 2ζ54+1 | 2ζ53+1 | 2ζ52+1 | 2ζ5+1 | 2ζ54+2ζ53+1 | 2ζ54+2ζ52+1 | 1 | 2ζ53+2ζ5+1 | 2ζ52+2ζ5+1 | complex faithful |
ρ28 | 4 | -4 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | -2ζ53-1 | -2ζ5-1 | -2ζ52-1 | √5 | -2ζ54-1 | -√5 | 2ζ5+1 | 2ζ52+1 | 2ζ53+1 | 2ζ54+1 | 2ζ52+2ζ5+1 | 2ζ53+2ζ5+1 | 1 | 2ζ54+2ζ52+1 | 2ζ54+2ζ53+1 | complex faithful |
ρ29 | 4 | -4 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 2ζ5+1 | 2ζ52+1 | 2ζ54+1 | -√5 | 2ζ53+1 | √5 | -2ζ52-1 | -2ζ54-1 | -2ζ5-1 | -2ζ53-1 | 2ζ54+2ζ52+1 | 2ζ52+2ζ5+1 | 1 | 2ζ54+2ζ53+1 | 2ζ53+2ζ5+1 | complex faithful |
(1 6)(2 7)(3 8)(4 9)(5 10)(11 16)(12 17)(13 18)(14 19)(15 20)(21 36)(22 37)(23 38)(24 39)(25 40)(26 31)(27 32)(28 33)(29 34)(30 35)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)
(21 26)(22 27)(23 28)(24 29)(25 30)(31 36)(32 37)(33 38)(34 39)(35 40)
(1 6)(2 7)(3 8)(4 9)(5 10)(11 16)(12 17)(13 18)(14 19)(15 20)(21 26)(22 27)(23 28)(24 29)(25 30)(31 36)(32 37)(33 38)(34 39)(35 40)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)
(1 23)(2 25 5 21)(3 22 4 24)(6 28)(7 30 10 26)(8 27 9 29)(11 38 16 33)(12 40 20 31)(13 37 19 34)(14 39 18 32)(15 36 17 35)
G:=sub<Sym(40)| (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20)(21,36)(22,37)(23,38)(24,39)(25,40)(26,31)(27,32)(28,33)(29,34)(30,35), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40), (21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40), (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,23)(2,25,5,21)(3,22,4,24)(6,28)(7,30,10,26)(8,27,9,29)(11,38,16,33)(12,40,20,31)(13,37,19,34)(14,39,18,32)(15,36,17,35)>;
G:=Group( (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20)(21,36)(22,37)(23,38)(24,39)(25,40)(26,31)(27,32)(28,33)(29,34)(30,35), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40), (21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40), (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,23)(2,25,5,21)(3,22,4,24)(6,28)(7,30,10,26)(8,27,9,29)(11,38,16,33)(12,40,20,31)(13,37,19,34)(14,39,18,32)(15,36,17,35) );
G=PermutationGroup([[(1,6),(2,7),(3,8),(4,9),(5,10),(11,16),(12,17),(13,18),(14,19),(15,20),(21,36),(22,37),(23,38),(24,39),(25,40),(26,31),(27,32),(28,33),(29,34),(30,35)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40)], [(21,26),(22,27),(23,28),(24,29),(25,30),(31,36),(32,37),(33,38),(34,39),(35,40)], [(1,6),(2,7),(3,8),(4,9),(5,10),(11,16),(12,17),(13,18),(14,19),(15,20),(21,26),(22,27),(23,28),(24,29),(25,30),(31,36),(32,37),(33,38),(34,39),(35,40)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40)], [(1,23),(2,25,5,21),(3,22,4,24),(6,28),(7,30,10,26),(8,27,9,29),(11,38,16,33),(12,40,20,31),(13,37,19,34),(14,39,18,32),(15,36,17,35)]])
Matrix representation of C24⋊2F5 ►in GL4(𝔽41) generated by
40 | 0 | 0 | 0 |
0 | 40 | 0 | 0 |
0 | 0 | 23 | 5 |
0 | 0 | 1 | 18 |
18 | 36 | 0 | 0 |
40 | 23 | 0 | 0 |
0 | 0 | 18 | 36 |
0 | 0 | 40 | 23 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 40 | 0 |
0 | 0 | 0 | 40 |
40 | 0 | 0 | 0 |
0 | 40 | 0 | 0 |
0 | 0 | 40 | 0 |
0 | 0 | 0 | 40 |
40 | 5 | 0 | 0 |
1 | 35 | 0 | 0 |
0 | 0 | 6 | 6 |
0 | 0 | 34 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
6 | 6 | 0 | 0 |
1 | 35 | 0 | 0 |
G:=sub<GL(4,GF(41))| [40,0,0,0,0,40,0,0,0,0,23,1,0,0,5,18],[18,40,0,0,36,23,0,0,0,0,18,40,0,0,36,23],[1,0,0,0,0,1,0,0,0,0,40,0,0,0,0,40],[40,0,0,0,0,40,0,0,0,0,40,0,0,0,0,40],[40,1,0,0,5,35,0,0,0,0,6,34,0,0,6,0],[0,0,6,1,0,0,6,35,1,0,0,0,0,1,0,0] >;
C24⋊2F5 in GAP, Magma, Sage, TeX
C_2^4\rtimes_2F_5
% in TeX
G:=Group("C2^4:2F5");
// GroupNames label
G:=SmallGroup(320,272);
// by ID
G=gap.SmallGroup(320,272);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,28,141,219,675,297,1684,6278,3156]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^5=f^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,f*a*f^-1=a*b*c*d,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f^-1=b*c*d,f*c*f^-1=c*d=d*c,c*e=e*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^3>;
// generators/relations
Export